  # GATE Mock Test 2 - Linear Algebra, Calculus and Optimization

Module - 2 Linear Algebra, Calculus and Optimization
GATE Mock Test 2 - Linear Algebra, Calculus and Optimization

1. _______ system of linear equation has no solution.

a. Inconsistent

b. Consistent

c. Dependent

d. Empty

Correct option is A) Inconsistent system of linear equation has no solution.

2. Determine whether the following system of linear equations have no solution, infinitely many solution or unique solutions.

x+2y=3,

2x+4y=15

a. No Solution

b. Infinitely Many Solution

c. Unique Solution

d. Cannot Be determined

a. No Solution

Step 1: Write down the given system of equations: Step 2: Simplify Equation 2 by dividing both sides by 2: Now, we have the system of equations: Step 3: Subtract Equation 1 from Equation 3: At this point, we have reached a contradiction. The equation 0=4.50=4.5 is not true, which means that there is no consistent solution to this system of equations.

Therefore, the system of equations has no solution. The correct answer is indeed option A) "No Solution."

3. Which of the following is NOT a property of the determinant of a matrix?

(a) The determinant of a triangular matrix is equal to the product of its diagonal elements. (b) The determinant of the transpose of a matrix is equal to the determinant of the matrix itself. (c) The determinant of a product of two matrices is equal to the product of the determinants of the two matrices. (d) The determinant of a matrix is equal to the determinant of its inverse.

: (d) The determinant of a matrix is equal to the determinant of its inverse.

Explanation: The determinant of a matrix is equal to the determinant of its inverse only if the matrix is non-singular.

4. What is the rank of the following matrix? (a) 1 (b) 2 (c) 3 (d) None of the above

Explanation: The rank of a matrix is the maximum number of linearly independent rows or columns in the matrix.

The given matrix has three linearly independent rows. Therefore, its rank is 3.

5. What is the eigenvalue of the following matrix corresponding to the eigenvector [1, 1, 1]? (a) 3 (b) 6 (c) 9 (d) 12

(d) 12

Explanation: An eigenvalue of a matrix is a scalar value that satisfies the following equation: where A is the matrix, x is the eigenvector, and lambda is the eigenvalue.

6. What is the diagonalization of the following matrix? Explanation: The diagonalization of a matrix is a process of finding a matrix that is similar to the given matrix and has a diagonal form.

To diagonalize the given matrix, we can find its eigenvalues and eigenvectors. The eigenvalues of the matrix are 1 and 5, and the corresponding eigenvectors are [1, 1] and [-1, 1].

We can then construct the following matrix:

P = [[1, -1], [1, 1]] This matrix is invertible, and its inverse is given by:

P^-1 = [[1, 1], [-1, 1]] We can now diagonalize the given matrix as follows:

D = P^-1 * A * P D = [[1, 1], [-1, 1]] * [[1, 2], [3, 4]] * [[1, -1], [1, 1]] D = [[1, 1], [1, 1]] Therefore, the diagonalization of the given matrix is [[1, 1], [1, 1]].

7. What is the derivative of the following function with respect to "x"?  Explanation :

To find the derivative of the given function f(x), use the rules of differentiation and differentiate each term separately:

8. Consider the function g(x)=x_3−3_x_2+2_x+1. What is the x-coordinate of the local maximum of this function?

(a) 0

(b) 1

(c) 2

(d) 3

c. 2

Explanation

To find the x-coordinate of the local maximum of the function g(x), we need to find the critical points and then determine which one corresponds to a local maximum.

First, find the derivative of g(x) and set it equal to zero to find the critical points:

g′(x)=32−6+2

Now, solve for x when g′()=0:

3_x_2−6+2=0

we get the critical points . To determine which one corresponds to a local maximum, we can analyze the behavior of the function around these points. which is approximately 2.

So, the correct answer is option (c).

9. What conditions must be satisfied for a function to be considered continuous at a specific point?

a. The limit at the point should exist, but the function's value may differ. b. The limit at the point should not exist, but the function's value should be defined. c. The limit at the point should exist and match the function's value, and the function should be differentiable. d. The limit at the point should be undefined, and the function's value should be zero.

c. The limit at the point should exist and match the function's value, and the function should be differentiable.

Explanation Continuity at a specific point requires that three conditions are met: the value of the function at the point should exist, the limit of the function as it approaches the point should exist and match the function's value, and the function should be differentiable at that point.

10. Which of the following functions is not continuous at x=0?

a. f(x)=∣_x_∣ b. g(x)=1/x c. h(x)=x^2+2x+1 d. k(x)=sin(x)

b. g(x)=1/x

Explanation 2: The function g(x)=1/x is not continuous at =0 because it has a vertical asymptote at this point, leading to a discontinuity. The other functions listed are continuous at =0.

###### Recommended Courses
Masters in CS: Data Science and Artificial Intelligence  20,000 people are doing this course
Join India's only Pay after placement Master's degree in Data Science. Get an assured job of 5 LPA and above. Accredited by ECTS and globally recognised in EU, US, Canada and 60+ countries.
Certification in Full Stack Data Science and AI  20,000 people are doing this course
Become a job-ready Data Science professional in 30 weeks. Join the largest tech community in India. Pay only after you get a job above 5 LPA.

Related Tutorials   4316   1526 Data Science Tutorial  2020   879   1159

Related Articles Linkedin working on AI Coach: Everything You Need to Know  5 mins  4408 Data Science in Healthcare: Roles, Benefits and Projects  4 mins  3307 How the AI Tool ChatGPT helps Data Scientists?  4 mins  2868 Best AI Tools to Boost Productivity in 2023 (Latest Update)  25 mins  4147 How does Zomato use Machine Learning?  8 mins  4604 Here Is How Ai Is Changing the World of Sports Forever!  11 mins  2515

AlmaBetter’s curriculum is the best curriculum available online. AlmaBetter’s program is engaging, comprehensive, and student-centered. If you are honestly interested in Data Science, you cannot ask for a better platform than AlmaBetter. Kamya Malhotra
Statistical Analyst
Fast forward your career in tech with AlmaBetter

Vikash SrivastavaCo-founder & CPTO AlmaBetter Related Tutorials to watch  Made with  in Bengaluru, India